

Practice Exercise

Mathematics **Understanding Quadrilaterals**

Basic

1. Which of the following quadrilaterals is convex, concave or complex?

(i)

(ii)

(iii)

- 2. How many diagonals do these quadrilaterals have?
 - (i) Hexagon
 - (ii) Pentagon
 - (iii) Triangle
- **3.** Define a regular polygon.

- **4.** In the figure below, ABCD is a quadrilateral
 - (i) How many pairs of adjacent sides are there? Name them.
 - (ii) How many pairs of opposite sides are there? Name them.

- **5.** In the following quadrilateral PQRS:
 - (i) How many pairs of opposite angles are there? Name them.
 - (ii) How many diagonals are there? Name them.

- **6.** Fill in the blanks:
 - (i) A quadrilateral has ____ sides.
 - (ii) A quadrilateral has ___ angles.
 - (iii) The sum of the angles of a quadrilateral is ____ .
- **7.** Three angles of a quadrilateral are 54°, 80° and 116°. Find the measure of the fourth angle.
- **8.** A quadrilateral has three acute angles, each measuring 75°. Find the measure of the fourth angle.
- **9.** State the name of a regular polygon of
 - (i) 4 sides and
 - (ii) 5 sides.
- **10.** Find x in the following figure.

- **11.** Name each of the following parallelograms:
 - (i) The diagonals are equal and the adjacent sides are unequal.
 - (ii) All sides are equal and one angle is 60°.
- **12.** Which of the following statements are true or false?
 - (i) The diagonals of a parallelogram are equal.
 - (ii) The diagonals of a rhombus are equal.
- **13.** State true or false:
 - (i) Every rhombus is a parallelogram.
 - (ii) Every rectangle is a square.
- **14.** In what parallelogram, two diagonals are not necessarily equal?
- 15. In the given figure, ABCD is a parallelogram in which $\angle A = 75^{\circ}$. Find the measure of each of the angles $\angle B$, $\angle C$, $\angle D$.

- 16. In the given figure, ABCD is a parallelogram in which $\angle BAD = 75^{\circ}$ and $\angle DBC = 60^{\circ}$. Calculate
 - (i) ∠ CDB and
 - (ii) ∠ADB.

- **17.** The sum of two opposite angles of a parallelogram is 130°. Find the measure of each of its angles.
- **18.** Define the following types of quadrilaterals: Parallelogram, Rectangle, Trapezium, and Square.
- 19. In a square ABCD, AB = (2x + 3) cm and BC = (3x 5) cm. Then, what is the value of x?
- **20.** The length of a rectangle is 8 cm and each of its diagonals measures 10 cm. Find its breadth.

Advance

- **21.** Prove that the sum of the angles of a quadrilateral is 360°.
- **22.** The four angles of a quadrilateral are in the ratio 2:3:5:8. Find the angles.
- **23.** Find the measure of angle x for the following quadrilateral.

24. Find the measure of s.

- **25**. Prove that the sum of exterior angles of a quadrilateral is 360°.
- **26.** Three angles of a quadrilateral are equal and the measure of the fourth angle is 120°. Find the measure of each of the equal angles.
- 27. In the given figure, the bisectors of $\angle A$ and $\angle B$ meet in a point P. If $\angle C = 100^\circ$ and $\angle D = 60^\circ$, find the measure of $\angle APB$.

- **28.** Prove that in a parallelogram, the opposite sides are equal and the opposite angles are equal.
- **29.** Prove that diagonals of a rhombus bisect each other at right angles.
- **30.** Two adjacent angles of a parallelogram are as 2:3. Find the measure of each of its angles.
- 31. In the given figure, ABCD is a parallelogram; AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. Prove that $\angle AOB = 90^{\circ}$

- 32. Two adjacent angles of a parallelogram are $(3x 4)^\circ$ and $(3x + 16)^\circ$. Find the value of x and hence find the measure of each of its angles.
- 33. In the given figure, ABCD is a parallelogram and line segments AE and CF bisect the angles A and C respectively. Show that AE ∥ CF.

- **34.** Prove that the diagonals of a square are equal and bisect each other at right angles.
- **35.** If an angle of a parallelogram is two-third of its adjacent angle, then what is the smallest angle of the parallelogram?

36. The length of diagonals of a rhombus are 16 cm and 12 cm. Find the length of each side of the rhombus.

- 37. The length and breadth of a rectangle are in the ratio 4:3. If the diagonals measures 25 cm, then what is the perimeter of the rectangle?
- **38.** If one angle of a parallelogram is 24° less than twice the smallest angle, then what is the largest angle of the parallelogram?
- **39.** Prove that any two adjacent angles of a parallelogram are supplementary.
- **40.** The sides of a rectangle are in the ratio 5:4 and its perimeter is 90 cm. Find its length and breadth.

M		Answers
1.	(i) (ii) (iii)	concave convex complex
2.	(i) (ii) (iii)	9 5 0
3.	A polygon with equal sides and equal angles.	
4.	(i) (ii)	4; AB and BC, BC and CD, CD and DA, DA and AB 2; AB and CD; AD and BC
5.	(i) (ii)	2; ∠S and ∠Q, ∠P and ∠R 2; PR and QS
6.	(i) (ii) (iii)	four four 360°
7.	110°	
8.	135°	
9.	(i) (ii)	Square Regular pentagon

- **10**. 130°
- **11**. (i) Rectangle
 - (ii) Rhombus
- **12**. (i) False
 - (ii) False
- **13**. (i) True
 - (ii) False
- **14.** Rhombus
- **15.** $\angle B = 105^{\circ}, \angle C = 75^{\circ}, \text{and } \angle D = 105^{\circ}$
- **16.** (i) 45°
 - (ii) 60°
- **17**. 65°, 115°, 65°, 115°
- **18.** Parallelogram is a quadrilateral with each pair of opposite sides parallel. Rectangle is a parallelogram with a right angle. Trapezium is a quadrilateral with a pair of parallel sides. Square is a rectangle with sides of equal length.
- **19**. 8
- **20**. 6 cm
- **21.** Hint: Divide it into 2 triangles and add the angles.
- **22.** 40°, 60°, 100°, 160°
- **23**. 101
- **24**. 45°
- **25.** Hint: Show that interior and exterior angle form a supplementary pair.
- **26**. 80°
- **27**. 80°
- **28.** Hint: Draw a diagonal and use properties of transversal cutting the two parallel lines.
- **29.** Hint: Draw both diagonals and in the triangles so formed, prove SSS congruence.
- **30.** 72°, 108°, 72°, 108°
- 31. Hint: The sum of two adjacent angles of a parallelogram is 180°. Therefore, take $\angle A + \angle B = 180^\circ$, $\angle OAB = \frac{1}{2} \angle A$ and $\angle ABO = \frac{1}{2} \angle B$. Then, consider $\triangle OAB$, and use the angle sum property of a triangle.
- **32.** X = 28; 80° , 100° , 80° , 100°
- 33. Hint: Show congruency of \triangle ADE and \triangle CBF. Thus prove that AECF is a parallelogram.

- **34.** Hint: Use the result that every square is a rectangle and here use the diagonal properties of rectangles. Then consider that every square is a rhombus and consider the diagonal properties of the rhombus.
- **35**. 72°
- **36**. 10 cm
- **37**. 70 cm
- **38**. 112°
- 39. Hint: Use the property of parallel lines: sum of interior angles on the same side of the transversal which is cutting two parallel lines is 180°
- **40.** 25 cm, 20 cm